RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR

B.A./B.SC. FIRST SEMESTER (July - December), 2012 Mid-Semester Examination, September 2012

: 10/09/2012 Date

PHYSICS (Honours)

Full Marks: 50

5

Paper: I : 11 am - 1 pm

Use two Answer Scripts. One for each section. SECTION-I

Answer any seven questions.

- 1. Solve $y'' 2y' + y = 2 \cos x$. Find the values of the arbitrary constants assuming y(0) = 0and v'(0) = 0. 2. The differential equation $(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1) = 0$ has a solution of the form $y = \sum_r a_r x^{K-r}$. Find the values of K. Find the relation between the constants for both values of 3.a) Prove that $\int_{-1}^{+1} P_n(x) P_m(x) dx = 0$ if $m \neq n$ where $P_n(x)$ and $P_m(x)$ are Legendre polynomials of order n and m respectively. 3 b) Show that $P'_{n+1}(x) - P'_{n-1}(x) = (2n+1)P_n(x)$. 2 4. Find out the condition that the vectors \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} are linearly independent. Interpret the result physically. 5. For a scalar $\phi = 3x^2 + 4xy + 5xz^2$ find out the rate of change of ϕ along the direction specified
- by the vector $\overrightarrow{3} + 2 \overrightarrow{j} + 5 \overrightarrow{k}$ at the point (1,2,3). What is the direction along which the rate of change is maximum?
- 6. Establish the result $div \overrightarrow{A} = \lim_{\Delta v} \frac{\int \overrightarrow{A} \cdot d\overrightarrow{s}}{\Delta v}$, the symbols having their usual meanings. 5
- 7.a) Let Z be defined implicitly through the equation, f(x, y, z) = 0

 $\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1$

- b) If, z = f(ax + by), show that $b \cdot \frac{\partial z}{\partial x} a \frac{\partial z}{\partial y} = 0$. 3+2
- 8. State Fourier's theorem clearly stating the Dirichlet conditions.
- 9. From the Fourier expansion $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$

Show that average of $[f(x)^2]$ over $(-\pi, \pi) = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$

5 10. Prove that the following relation involving the Delta function is valid $\delta(nx) = \frac{1}{|n|}\delta(x)$. Using the above relation, show that Delta function is an even function. 4+1

SECTION-II

Answer any three questions.

11. a) What is optical path? State Fermat's principle. 1 + 1b) When a light source is placed at the focus of a parabolic mirror, show that all rays after reflection go parallel to axis of mirror. What is aplanatic surface? 2+112.a) Define principal and nodal points of an optical system. Show that principal and nodal points of an optical system will be identical if the media on both sides are same. 2 + 1b) Deduce Helmholtz equation. 13. A small object is placed 50 cm from the curved surface of a glass hemisphere of radius 12 cm and n = 1.5. Find the cardinal points and nature of the image. 3+2

14. Find the achromatic condition for the two lenses of different focal lengths placed at a distance a apart.

15. What are spherical aberration and chromatic aberration? Mention some remedy for spherical aberration.